A model-based fuzzy logic controller with Kalman filtering for tracking mean arterial pressure
نویسندگان
چکیده
This paper proposes a new noninvasive measurement method for tracking the tendency of mean arterial pressure (MAP) in the radial artery. The designed system consists of a tonometer, a microsyringe device, and a model-based fuzzy logic controller. The modified flexible diaphragm tonometer is to detect the continuous blood pressure waveform and vessel volume pulse. A precise mathematical model describing the interaction between the tonometer and artery is derived. To reach accurate measurement without distortion, a model-based fuzzy logic control system is designed to compensate the change of MAP by applying a counter pressure on the tonometer chamber through the microsyringe device. The proposed control system consists of a linear predictor, a Kalman filter, and a synthetic fuzzy logic controller (SFLC). The linear predictor is to estimate the MAPs changing tendency based on the identified arterial pressure–volume model and then to beat-to-beat adjust the function of SFLC. The Kalman filter is to reduce the physiologic and measurement disturbance of the vessel volume oscillation amplitude (VOA). The SFLC is composed of three parallel subcontrollers, each of which is a simple fuzzy logic controller, for processing the three changing states of the MAP: ascending, descending, and stabilizing states, respectively. The design of the fuzzy rules in each subcontroller is based on the oscillometric principle saying that the arterial vessel has the maximum compliance when the detected vessel volume pulse reaches its maximum amplitude. Simulation results show that, for the real physiologic MAP with changing rates up to 20 or 20 mm-Hg/minute, the model-based SFLC can beat-to-beat adjust the tonometer’s chamber pressure to follow the tendency of MAP accurately.
منابع مشابه
Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملModel-based synthetic fuzzy logic controller for indirect blood pressure measurement
In this paper, a new measurement system for the noninvasive monitoring of the continuous blood pressure waveform in the radial artery is presented. The proposed system comprises a model-based fuzzy logic controller, an arterial tonometer and a micro syringe device. The flexible diaphragm tonometer registers the continuous blood pressure waveform. To obtain accurate measurement without distortio...
متن کاملA New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System
In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملDesign of Maximum Power Point Tracking in Solar Array Systems Using Fuzzy Controllers
In recent year's renewable energy sources have become a useful alternative for the power generation. The power of photovoltaic is nonlinear function of its voltage and current. It is necessary to maintain the operation point of photovoltaic in order to get the maximum power point (MPP) in various solar intensity. Fuzzy logic controller has advantage in handling non-linear system. Maximum power ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Systems, Man, and Cybernetics, Part A
دوره 31 شماره
صفحات -
تاریخ انتشار 2001